WASTE MANAGEMENT 2005, 25, 463-472
  Probabilistic approach for estimating the release of contaminants under field management scenarios
  Sanchez, F; Kosson, DS
  A probabilistic approach is presented for estimating the release of contaminants by leaching, when wastes are being considered for disposal in a class of landfills but the specific landfill disposal site is uncertain. A simple percolation and equilibrium-based release model is used in conjunction with laboratory testing results and observations of field leachate characteristics for municipal solid waste landfills, hazardous waste landfills and industrial co-disposal landfills. The approach is applied for assessing the efficacy of potential treatment processes for mercury contaminated soils. For each landfill scenario, historical values of leachate pH and annual leachate generation quantities were used to derive the probability distribution functions of the field pH and LS ratio that may be expected to contact the disposed material over an estimated time period of 100 years. For each potential treatment process, laboratory testing was used to establish the treated material's leaching characteristics as a function of pH LS ratio. This approach allowed determination of distribution frequencies and limit values for release estimates instead of single point estimates. The probability of the mass of a constituent of interest released exceeding a hypothetical threshold was examined for each treatment process and landfill system. Results of the probabilistic analysis allowed for integration of a range of data and provided a good basis for assessing the efficacy of the examined treatment processes over the three assumed disposal scenarios. (C) 2005 Elsevier Ltd. All rights reserved.