JOURNAL OF HAZARDOUS MATERIALS 2003, 96, 229-257
   
  Environmental assessment of waste matrices contaminated with arsenic
   
  Sanchez, F; Garrabrants, AC; Vandecasteele, C; Moszkowicz, P; Kosson, DS
   
  The use of equilibrium-based and mass transfer-based leaching tests has been proposed to provide an integrated assessment of leaching processes from solid wastes. The objectives of the research presented here are to (i) validate this assessment approach for contaminated soils and cement-based matrices, (ii) evaluate the use of diffusion and coupled dissolution-diffusion models for estimating constituent release, and (iii) evaluate model parameterization using results from batch equilibrium leaching tests and physical characterization. The test matrices consisted of (i) a soil contaminated with arsenic from a pesticide production facility, (ii) the same soil subsequently treated by a Portland cement stabilization/solidification (S/S) process, and (iii) a synthetic cement-based matrix spiked with arsenic(III) oxide. Results indicated that a good assessment of contaminant release from contaminated soils and cement-based S/S treated wastes can be obtained by the integrated use of equilibrium-based and mass transfer-based leaching tests in conjunction with the appropriate release model. During the time scale of laboratory testing, the release of arsenic from the contaminated soil matrix was governed by diffusion and the solubility of arsenic in the pore solution while the release of arsenic from the cement-based matrices was mainly controlled by solubilization at the interface between the matrix and the bulk leaching solution. In addition, results indicated that (i) estimation of the activity coefficient within the matrix pore water is necessary for accurate prediction of constituent release rates and (ii) inaccurate representation. of the factors controlling release during laboratory testing can result in significant errors in release estimates. (C) 2002 Elsevier Science B.V. All rights reserved.